The whole point of it is that in a truly random system all known patterns should eventually emerge somewhere within it.
So pi (probably) has this property. There are some joke compression programs around this (they don’t really work because it takes up more space to store where something in pi is, than storing the thing itself). But it is funny, to think that pi could theoretically hold every past, present, and future piece of information within those digits after the decimal.
Also interesting is the notion of ‘Kolmogorov Complexity’ - what is the shortest programme that could produce a given output? Worst case for a truly random sequence would just be to copy it out, but a programme that outputs eg. a million digits of pi can actually be quite short. As can a programme that outputs a particular block cypher for an empty input. In general, it is very difficult to decide how long a programme is needed to produce a given output, and what the upper limit of compression could be.
So pi (probably) has this property. There are some joke compression programs around this (they don’t really work because it takes up more space to store where something in pi is, than storing the thing itself). But it is funny, to think that pi could theoretically hold every past, present, and future piece of information within those digits after the decimal.
https://github.com/philipl/pifs
https://ntietz.com/blog/why-we-cant-compress-messages-with-pi/
Also interesting is the notion of ‘Kolmogorov Complexity’ - what is the shortest programme that could produce a given output? Worst case for a truly random sequence would just be to copy it out, but a programme that outputs eg. a million digits of pi can actually be quite short. As can a programme that outputs a particular block cypher for an empty input. In general, it is very difficult to decide how long a programme is needed to produce a given output, and what the upper limit of compression could be.
https://en.m.wikipedia.org/wiki/Kolmogorov_complexity